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Light quality and plant growth regulators influence 
pigment production in Alternanthera brasiliana calli 

 

Andressa Reis1, Alitcia Moraes Kleinowski1, Renata Trevizan Telles1, Fátima Rosane 
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Alternanthera brasiliana is a medicinal plant with several popular use and high production of betalains. 
The aim of the present research was to establish a protocol for callus induction and betalain 
biosynthesis in A. brasiliana species, as well as to investigate the effect of different qualities of light in 
increasing betalain in A. brasiliana callus cultures. In this way, the callus initiation and the improvement 
of secondary metabolites were induced using varying phytohormones concentrations and under the 
influence of red, white and blue lights. To start the experiments, the plants were cultivated for 30 days 
in Murashige and Skoog (MS) medium to grow and form internodes. These were inoculated in MS 
medium supplemented with different combinations of plant growth regulators to find the best 
combination for medium callus induction (MCI). After another 30 days, the explants were transferred to 
a medium for betacyanin induction (MBI) containing thidiazuron (TDZ) and α-naphthalene acetic acid 
(NAA) under blue, white, and red lights. The best medium for A. brasiliana callus induction with higher 
production of betalains, was the MS medium supplemented white indole-3-acetic acid (IAA) and 2,4-
dichlorophenoxyacetic acid (2,4-D), before inoculation on the MBI. The blue and white lights promoted 
callus pigmentation (betalains), whereas the red light was not effective at inducing pigmentation in the 
calli. 
 
Key words: Amaranthaceae, betacyanin, betalains, pigments, spectra of light, secondary metabolites 

 
 
INTRODUCTION 
 
Seeking an improvement in health and quality of life in 
recent years, the use of synthetic dyes have been 
sidetracked, due to the potential hazards they generate, 
such as allergies and induction of various  diseases,  that 

way, natural dyes have gained market due to their 
bioactive properties and applications as health promoters 
when included in diets (Martins et al., 2017). Carotenoids,  
anthocyanin, and betalains  are  examples  of  plants with 
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pigment production; physiologically, this production acts 
as attractants for pollinators and agents to disperse the 
seeds (Osbourn, 2017). These pigments have great 
potential and can be used as food dyes because they 
present not only coloring attributes, but also properties 
related to antioxidant, antiradical, anti-inflammatory and 
cytotoxic, radio protective, neuroprotective, antimicrobial, 
anti-proliferative and hepato-protective properties, 
enabling his use in food, cosmetic, and pharmaceutical 
industries (Georgiev et al., 2008; Georgiev et al., 2010; 
Biswas et al., 2013; Martins et al., 2017). 

Betalains are nitrogenated, water-soluble vacuolar 
pigments, produced by most of caryophyllales plants and 
never co-occur with anthocyanins. They are synthesized 
from L-tyrosine and L-phenylalanine (Osbourn, 2017) and 
are immonium derivatives of betalamic acid for which the 
conjugation system 1,7-diazaheptamethine is the 
chromophore. The carboxylic groups in the betalain 
structure provide the acidic characteristic to the molecule, 
thus, making it different from the alkaloid group, which 
has basic character (Herbach et al., 2006). The yellow-to-
orange-colored betaxanthins release green auto 
fluorescence and are produced by condensation of 
betalamic acid and amino acids (or amines). Similarly, 
the violet betacyanins are O-glycosides (C-5 or C-6) and 
come from the spontaneous condensation of betalamic 
acid and cyclo-dopa. The acylation of betacyanins 
generates its main derivative, betanin (betanidin-5-O-β-
glucoside) (Gandía-Herrero et al., 2010; Reis et al., 
2015). 

The great interest in the market of renewable natural 
products has drawn attention to the technical and 
commercial viability of a variety of systems, exploring in 
vitro and cell and tissue cultured plants as potential bio-
factories of phytochemical products, where there is a 
potential in making the production more reliable, simple 
and predictable. The ability of plant cells, calli, and 
tissues cultivated in vitro to produce and accumulate 
chemicals is important by maintaining carefully a 
controlled and aseptic environment; these types of 
cultures can also provide an excellent source for in-depth 
research of metabolic and biochemical pathway and the 
possibility to predict how amount can be produced in the 
cultures during a period of time, something impossible to 
make in nature (Rao et al., 2002; Namdeo, 2007; 
Karuppusamy, 2009).  

Another important point is the use of elicitors (that is, 
chemical and stressor agents) during cultivation which 
can change or induce some metabolic pathways that 
affect, both qualitatively and quantitatively, the plant 
secondary metabolism (Karuppusamy, 2009; Othman et 
al., 2016).  

Physical stimulation using light is one of the elicitor 
agents widely used in plant tissue culture; due to the 
phytochromes and cryptochromes, plants can perceive a 
small fraction of light radiation, changing the gene 
expression and  physiological  responses  and  modifying  
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and even maximizing plant development and levels of 
secondary metabolites as a form of protection (Katerova 
et al., 2017). Red and blue lights have been used to elicit 
several phenotypic expressions via perception and signal 
transduction pathways. In the induction of betalain 
biosynthesis, the use of light was reported in sugar beet 
(Beta vulgaris), seedlings of Amaranthus caudatus, callus 
of Portulaca, cell cultures of Chenopodium album, and 
callus of Alternanthera brasiliana (L.) Kuntze and Adachi 
1995; Macedo et al., 1999; Silva et al., 2005; Zhao et al., 
2010). 

A. brasiliana (L.) Kuntz (Amaranthaceae) is a plant 
broadly distributed in South America, with ability to 
accumulate pigments as betalains (betacyanins and 
betaxanthins) and flavonoids. This species is used in 
traditional medicine for the treatment of several human 
pathologies as cough, diarrhea, infections, and it has also 
analgesic activity. Moreover, its activity as an 
antiproliferative, anti-inflammatory, antiedematous and 
antioxidant, has been reported. It also shows activity 
against the herpes simplex virus and, recently, 
anticonvulsant effect (Lagrota et al.,1994; Macedo et al., 
1999, 2011; Facundo et al., 2012; Andreazza et al., 2013; 
Schallenberger et al., 2017). 

Based on the foregoing, A. brasiliana offers a promising 
object for plant biotechnology studies. Thus, the aim of 
the present research was to establish a protocol for callus 
induction and betalain biosynthesis in A. brasiliana 
species, as well as to investigate the effect of different 
qualities of light in increasing betalain in A. brasiliana 
callus cultures.  
 
 

MATERIALS AND METHODS 
 

Callus induction  
 
The experimental A. brasiliana plants were grown for 30 days in a 

growth chamber under a photon flux density of 22 mol m-2 s-1 for a 
16-h photoperiod at 25 ± 2°C. Internode segments of 0.1 to 0.2 cm 
in length were placed in a medium for callus induction (MCI) (Zhao 
et al., 2010), which consisted of MS basal medium with sucrose 30 
g L-1, phytagel 2 g L-1, myo-inositol 100 mg L-1, adenine 0.5 mg L-1, 
ascorbic acid 3 mg L-1, and different plant growth regulators. Three 
different combinations of phytoregulators were added: 1 mg L-1 
kinetin (KIN) and 1 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D; 
MCI-1); 0.75 mg L-1 indole-3-acetic acid (IAA) and 1 mg L-1 2,4-D 
(MCI-2); and 1 mg L-1 6-benzylaminopurine (BA) and 0.5 mg L-1 2,4-
D (MCI-3). Assembled six plates, each containing ten explants, 
were inoculated and placed in a growth chamber at 25 ± 2°C for 22 
days in the dark, passed this time, and were transferred to white 
light for an additional 7 days. 
 
 

Betacyanin induction and light sources 
 

All explants from the MCI media described earlier were transferred 
to a medium for betacyanin induction (MBI) (Zhao et al., 2010), 
composed of MS medium supplemented with 3 g L-1 phytagel, 30 g 
L-1 sucrose, 100 mg L-1 myo-inositol, 0.5 mg L-1 adenine, 3 mg L-1 
ascorbic acid, thidiazuron (TDZ) 0.5 mg L-1, and 1 mg L-1 of 1-
naphthaleneacetic  acid (NAA).  Over  a  40-day  period,  the  plates  
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containing the explants were placed under different light regimes: 
white light (full-spectrum-fluorescent tube Sylvania®; 40 W), blue 
light (peak emission at 470 nm-14 W, compact fluorescent lamp 
Taschibra®), and red light (peak emission at 660 nm-15 W, compact 
fluorescent lamp G-light®). The photon flow density for the white, 

blue, and red-light levels were 25, 12, and 22 mol m-2 s-1, 
respectively, as measured using a light meter (Hansatech® 
Quantum Sensor QSRED). 
 
 
Evaluation of callus pigment appearance and callus pigment 
intensity 
 
This evaluation was developed seeking a visual quantification of the 
appearance and intensity of the magenta pigmentation produced in 
the callus. Numerical scores were given to pigment appearance 
and intensity in the following manner: 0 (zero), for callus without 
pigmentation (absence of magenta color); (1) for random magenta 
dots in callus/low pigment intensity; (2) for approximately 50% of 
magenta in callus/moderate color intensity, and (3) for nearly 100% 
magenta in callus/high intensity of coloration visually detected. The 
scores of 0 to 3 were assigned by four different observers realized 
in the end of the experiment, after almost 70 days in culture, and 
the averages of the analysis were used. 
 
 
Relative callus growth rate (RCGR) and total calli weight (Wc) 
 
RCGR was calculated using the fresh callus weight (FC), as 
described by Silva and Dobránszki (2015), according to the 
following equation: 
 

,  

 
Where, FCf=final fresh callus weight, FCi=initial fresh callus weight, 
ti=first day of treatment, and tf=last day of treatment. 

The total calli weight (Wc) was calculated at the end of the 
experiment based on the fresh callus weight (FC) from a Petri dish 
containing 10 calli. 
 
 
Betaxanthin quantification 
 
Homogenates using 0.25 g of fresh calli, produced by induction, 
were obtained by maceration in a porcelain mortar using phosphate 
buffer at 10 mM (pH 6.0) and 10 mM sodium ascorbate. The 
homogenates were filtered through cheesecloth and centrifuged at 
10000 g, for 20 min at 4°C (Gandía-Herrero et al., 2005). The 
spectrophotometric analyses were performed on a T80 UV/VIS 
Spectrometer (PG Instruments) kept at 25°C (PTC-2 Peltier 
Temperature Controller). The betaxanthin concentration calculated 

using the molar extinction coefficient of miraxanthin (=48000 M-

1cm-1) after measurements was taken at 480 nm (Schliemann et al., 
1999). 
 
 

Total betacyanins quantification  
 

The total amount of betacyanins corresponds to the sum of 
betanidin and betanin amounts, being the first aglycone and the 
second glycosylated. To extract betanidin, an acetate buffer at 10 
mM and methanol (70:30; v/ v) at a pH 5.0, plus sodium ascorbate 
of 10 mM were used. To obtain betanin, a phosphate buffer of 10 
mM at pH 6.0, plus sodium ascorbate (10 mM) and organic solvents 
was used. For both extractions, 0.25 g of fresh calli was weighed, 
and the homogenates were produced as described for the 
betaxanthin   quantification.  The    molar     extinction    coefficients  

 
 
 
 
=54000 M-1cm-1 and =65000 M-1cm-1 were employed to calculate 
the amount of betanidin and betanin, respectively. A wavelength of 
536 nm was used as described previously (Gandía-Herrero et al., 
2005). 
 
 
Total flavonoids quantification 
 
The quantification of total flavonoids was done as described by 
Salvador et al. (2006), using an acetate/methanol buffer as the 
extraction solvent and the measurements were done at wavelength 
of 330 nm. The results were expressed as the amount of quercetin 

(mol) per g of calli, using the linear equation: y = 0.1548x - 0.005 
(r2 = 0.9952). 
 
  
Normalized index of variation (NIV) 
 
NIV was calculated using the equation (Tattini et al., 2006):  
 
NIV = (X Light - X Control) (X Light + X Control),  
 
Where, Xlight is the two tested light colors (blue and red) and XControl 

is the white light. The calculations were performed separately for 
each type of medium used. The NIV depicts the actual treatment 
effect of the analyzed calli and it may be positive or negative as 
compared to the control (white light). 
 
 
Statistical analysis 
 
The experiment was completely randomized in a factorial 3 × 3 
design, represented by the three different media cultures and the 
three light levels. A total of six replications (6 Petri dishes) were 
performed, with experimental unit being a Petri dish with ten 
explants. The assays were performed three times and the statistical 
analyses, ANOVA and Tukey’s tests were performed at P <0.05 to 
calculate significant differences in treatments, using the statistical 
software SAS v.9.3 (SAS Institute Inc., Cary, NC) (SAS, 2003). 

 
 
RESULTS  
 
Evaluation of callus pigment appearance and callus 
pigment intensity 
 
The first changes in coloration of the calli were observed 
at the beginning of the experiment. Coloration intensified 
when the samples were placed under the different lights. 
The calli cultivated in the darkness were white in color 
and after exposure to different lights turned green (Figure 
1G and H), pink (Figure 1E), or magenta (Figure 1B), or 
de mixture of this colors, green with small magenta dots 
on some calluses (Figure 1I), green with the center 
becoming magenta (Figure 1A, C and D) and the inverse, 
and most magenta/pink with some clear green parts 
(Figure 1F). Pigmentation changes were not found along 
the entire epidermal surface, but only in specific regions, 
thus forming these mosaics of colors.  

The calli grown for 40 days in the MBI composed of 
white, green, and magenta spherical-cell agglomerates, 
and an opaque color (clear green) was also observed in 
the  calli   surface  (Figure  1F).  Under  red  light,  all  the  
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Figure 1. Pigmentation in Alternanthera brasiliana callus. Explants from internodes, grown in different 
culture medium for callus induction (MCI) and after different wavelengths of light, for 40 days in 
medium for betacyanin induction (MBI). (A) MCI-1: 1 mg L-1 KIN and 1 mg L-1 2,4-D + MBI (0.5 mg L-1 
TDZ and 1 mg L-1 NAA) under blue light; (B) MCI-2: 0.75 mg L-1 IAA and 1 mg L-1 2,4-D + MBI under 
blue light; (C) MCI-3: 1 mg L-1 BA and 0.5 mg L-1 2,4-D + MBI under blue light; (D) MCI-1 + MBI under 
white light; (E) MCI-2 + MBI under white light; (F) MCI-3 + MBI under white light; (G) MCI-1 + MBI 
under red light; (H) MCI-2 + MBI under red light and (I) MCI-3 + MBI under red light. Bar = 1 cm. 

 
 
 
experimental plates, with the different combination of 
phytoregulators showed oxidation of the calli tissue. 

As the only source of photosynthesis and a vital 
environmental factor, light plays an important role in 
directing photosynthetic biosynthesis and photo-
morphogenesis, which are correlated with the 
phytochemical biosynthesis and accumulation (Bian et 
al., 2014). Although, in the experiment, all plants were 
clones, same growth age and initial culture medium, in 
the first phase of callogenesis induction, different growth 
regulators were used, which caused the formation of 
tissues with their inherent characteristics and, allowing 
different photomorphogenesis and demonstrating these 
characteristics phenotypically and metabolically by the 
diverse colorations presented in the callus. 

The light quality (spectrum) has the potential to be 
involved in the shades of betalains seen in A. brasiliana 
calli, where it promoted a great impact on the 
morphogenesis and metabolism of these structures. The 
apparent colors of the calli depended on the level of light 
exposure for the three media combinations used. The 
explants cultivated in blue and white lights provided a 
higher number of calli with pigmented  dots,  partially  and  

fully magenta.  
These qualities of light were found as the most visually 

pigmented treatment, in MCI-2 (Figure 1B and E, for blue 
and white light, respectively), where the calli were 100% 
magenta and associated with the presence of betalains. 
In the red light, however, there was no formation of 
apparent pigments, barely small spots in some callus 
(less than 5% magenta) in the MCI-3 (Figure 1I). 

The evaluation of color intensity showed the same 
pattern for color appearance: the best lights for 
production of pigments are moderate and high intensity 
white and blue lights. The calli grown in MCI-2 had the 
highest intensity of magenta color for all light regimes, 
with moderate to intense coloration being displayed 
(Figure 2B). The statistical analysis corresponds to the 
score values as shown in Figure 2.  
 
 
RCGR and Wc 
 
The effects of light regime are felt throughout the process 
of plant morphogenesis. Thus, through the analysis of 
RCGR and the Wc, the  differences  in the growth pattern  
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Figure 2. Pigment appearance (A) and pigment intensity (B) in Alternathera 
brasiliana callus after cultivation in Medium for Betacyanin Induction (MBI), 
under different light regimes (for the media composition, please see Figure 1). 
The results are represented by the average of four observations with the 
following scale: zero (absence/lacking of color in the callus), 1 (random pink 
dots/low color intensity in the callus), 2 (50% of magenta/moderate color 
intensity in the callus), 3 (100% of magenta/high color intensity in the callus). 
Different letters indicate significant differences (at P<0.05) among the light 
quality (capital letters) and the three medium studied (small letters). 

 

 
 
were clearly visualized in the different light qualities 
tested.  

RCGR in blue and white light exposure the outcomes 
stood out from the results in red light (Figure 3A). For calli 

grown on MCI-1, their RCGR did not differ among the 
three light levels. When grown on MCI-2, the cultivation 
under white light promoted better growth results in these 
cells   formations.  The  RCGR    in    MCI-3   was   better  
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Figure 3. Relative callus growth rate (RCGR) (A) and callus total weight (Wc) (B) 
of Alternathera brasiliana calli, after cultivation in Medium for Betacyanin 
Induction (MBI), under different light regimes. Different letters indicate significant 
differences (at P<0.05) among the light regimes (capital letters) and the three 
medium studied (small letters). For the media composition, please see Figure 1.  

 
 
 
influenced by white and blue lights, with similar results, 
found for a daily increase in calli cell mass in these two 
light qualities. About the different medium in the same 
light, under white light, the RCGR had better results for 
MIC-1 and 2;  MIC-3  presented  the  best  results in  blue 

light, although, did not differ statistically from the MCI-2 
medium cultured in this quality of light. Under red light, 
however, significant differences were not detected among 
the different media for calli cultivation. Corresponding to 
the Wc, the greatest mass  accumulation  was  visualized 
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Table 1. Betalainsa (betacianin and betaxanthin) contents in Alternanthera brasiliana calli cultivated in Medium for 
Betacyanin Induction (MBI), under different light qualities. 
 

Analysis Media 
Light regimes 

White Blue Red 

Betaxanthin (miraxantin V) 

MCI-1 0.231
Ba

 ± 0.037 1.906
Ac

 ± 0.676 0.914
Bb

 ± 0.320 

MCI-2 0.387
Ca

 ± 0.118 4.663
Aa

 ± 0.934 1.503
Bab

 ± 0.302 

MCI-3 0.339
Ca

 ± 0.135 3.245
Ab

 ± 0.580 1.885
Ba

 ± 1.450 

     

Betanin 

MCI-1 0.545
Aa

 ± 0.195 2.029
Ac

 ± 0.763 0.798
Aa

 ± 0.321 

MCI-2 1.835
Ba

 ± 0.646 8.201
Aa

 ± 3.521 1.566
Ba

 ± 0.471 

MCI-3 1.339
Ba

 ± 0.661 5.106
Ab

 ± 1.186 1.867
Ba

 ± 1.670 

     

Betanidin 

MCI-1 0.124
Ab

 ± 0.086 0.622
Ab

 ± 0.296 0.126
Aa

 ± 0.043 

MCI-2 4.640
Aa

 ± 2.106 4.350
Aa

 ± 2.551 0.473
Ba

 ± 0.136 

MCI-3 3.225
Aa

 ± 2.083 1.712
ABb

 ± 0.624 0.610
Ba

 ± 0.369 
 
a
Contents (mg 100 g

-1
 fresh weight of A. brasilana calli) are means of triplicate determinations

 
(Tukey test at P < 5%) ± standard 

deviation. Different letters indicate significant differences (at P<0.05) among the light quality (capital letters) and the three-medium 
studied (small letters). 

 
 
 
in white light in all combinations of growth regulators 
tested (Figure 3B). The callus cultivated in MCI-1 showed 
noteworthy results in white light, but did not differ 
statistically from the blue light. In the cultures from MCI-2, 
the white light provided a greater increase in the total 
cellular mass and those cultured in the MCI-3 medium, 
had a rise of the mass in the white and blue lights, not 
statistically different in both. Concerning the correlation 
between the formation of cell agglomerates and the light 
quality, under blue and red lights, the final mass is not 
different among the media, but for the media cultivated in 
white light, both MCI-2 and 3 yielded calli with a higher 
final biomass accumulation. 
 
 
Betaxanthins, betacyanins and total flavonoids 
quantification  
 
To investigate the additional effects of the light qualities 
of white, blue, and red levels in the accumulation of 
secondary metabolites in the A. brasiliana calli, the 
samples were subjected to a quantification analysis of 
their betalain pigments and of their total flavonoids (both 
after 40 days of cultivation in MBI). 

The spectrophotometric analysis revealed that the blue 
light was more effective in the induction of betaxanthin 
biosynthesis (Table 1 and Figure 5A, B, and C) in all the 
media assayed, with the concentration of this pigment 
peaking in MCI-2. Under irradiation by red light, however, 
both MCI-2 and MCI-3 induced a higher accumulation of 
betaxanthins, whereas the white light did not show any 
significant differences among the treatments. 

It shows the results for betanin, which had the highest 
yield in the calli extracts grown under blue light and in 
both  MCI-2  and  MCI-3  (Table  1).  The  MCI-1  was  an 

exception for blue light and did not show significant 
results in the production of this glycosylated betacyanins, 
similar to the treatment using white light, which was not 
statistically significant in the media culture used. 

The results of the quantification of betanidin in calli are 
presented in Table 1. The blue light was inductor for this 
type of pigment production in the MCI-2 and MCI-3. 
Under blue light, pigment production was higher in the 
calli cultivated in MCI-2, medium composed by two 
auxins. For the calli subjected to white light, calli inducted 
in MCI-2 and MCI-3 had higher biosynthetic production of 
aglycones. MCI-1 and red-light treatments did not present 
statistical differences in the treatments. 

In the quantification of total flavonoids (Figure 4), all the 
culture media treatments produced a significant effect 
independently of the light quality to which it was 
submitted. The media containing only auxins (MCI-2) and 
cytokinin combined to auxin (MCI-3), presented the best 
results as inductors for the biosynthesis of flavonoids in 
A. brasiliana calli.  

The estimated Normalized Index of Variation (NIV) 
helps to visualize the relative effects of the red and blue 
qualities of light in different culture media. In MCI-1, 
betaxanthin, betanin, and betanidin indices were higher 
(0.78, 0.58 and 0.66, respectively) when treated with the 
blue light rather than that by red light (the latter had 
values closer to the control, white light). The NIV values 
for flavonoids in different light qualities did not change 
compared to those in the control (Figure 5A). 

In MCI-2, there is an increase in NIV values for the 
content of betaxanthin (0.84) and betanin (0.63) under 
the treatment of blue light. However, neither the blue or 
red lights increased the content of flavonoids and 
betanidin (Figure 5B). In MCI-3, the NIV-related content 
of   betaxanthin   and  betanin  enhance  under  blue  light  
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Figure 4. Quantification of total flavonoids in Alternanthera brasiliana calli, after Medium for calli induction 
and cultivation in Medium for Betacyanin Induction (MBI), under different light regimes. For the media 
composition, please see Figure 1. Contents are means of triplicate determinations ± standard deviation 
and the average followed by the same letters did not present statistical differences after Turkey´s test 
(P<0.05). Fresh weight (FW).  

 
 
 
(0.81 and 0.58, respectively) but not so for contents of 
flavonoid (-0.013) and betanidin (-0.30). For the last 
variable, however, both light qualities of blue and red had 
a negative effect compared to the control (Figure 5B and 
C). 
 
 
DISCUSSION 
 
The quality of the light spectrum and the culture medium 
can influence the morphogenesis process from the entire 
plant to those grown in vitro. Species like Camptotheca 
acuminata had their seedlings studied with different 
qualities of light demonstrating that the development, leaf 
area, chloroplast development and photosynthetic 
efficiency were modified by the use of red light rather 
than blue or yellow light (Yu et al., 2017). In strawberry 
(Fragaria × ananassa), the total content of anthocyanins 
increased by the use of red and yellow plastic films, 
suggesting the activation of enzymes or transcription 
factors related to the flavonoid pathway (Miao et al., 
2016). 

As reported in the methods, the period of darkness at 
the beginning of calli induction were required for the 
formation of the cell masses and the reduction of 
phenolic compounds, which can affect the explants; this 
was specified by Tan et  al.  (2010). The  changes  in  the 

calli pigments and its intensity were visualized in the first 
week after exposing the plates in an environment treated 
by different kinds of light (visual observations, data not 
shown), firstly in white light. Reports have demonstrated 
that betalains biosynthesis occurs between the sixth and 
fifteenth days, but is most intense towards the ninth day 
(Radfar et al., 2012).  

The development of different lineages with colored cells 
in plant tissue cultures depends on specific gene 
sequences in the calli induction and these individual 
phenotypes, once established, can be perpetuated and 
maintained in the culture medium (Girod and Zyrd, 1991). 
A determining factor for the establishment and stability of 
these lineages is the composition of the culture medium 
for A. brasiliana calli. The MS medium containing IAA 
(0.75 mg L

-1
) and 2,4-D (1 mg L

-1
) exposed to blue and 

white lights have been highlighted as the strongest 
inductors for production and intensification of the 
pigments. In studies that used Zaleya decandra calli 
grown under white light (Radfar et al., 2012), the highest 
pigments intensity was seen when the samples were 
cultured on the MS-plus-TDZ (2 mg L

-1
) and 2,4-D (1 mg 

L
-1

). However, it is not entirely clear whether the intense 
pigmentation is due to an increase of metabolic activity in 
individual cells, or simply an increase in the number of 
cells able to produce betalains (Kishima et al., 1991). 

Changes  in   the   combinations  of   the   plant  growth  
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Figure 5. Normalized lndex of Variation for betaxanthin, betanin, betanidin and flavonoids in A. brasiliana callus 
growth in Medium for calli induction and cultivation in Medium for Betacyanin Induction (MBI), under different light 
qualities. For the media composition, please see Figure 1. The dotted horizontal line shows the normalized values 
of the treatment with white light. 

 
 
 
regulators in a culture medium can be used to modulate 
the frequency and direction of the inter-conversion events 
that result in chimeric phenotypes, which are calli with 
only one-color pattern and after to transferring them to a 
medium with low concentration of 2,4-D, sectors with 
another coloration arise (Leathers et al., 1992). The 
speed of this response, which may be 1-2 cell 
generations, indicates that the transformation of the 
phenotype, induced by hormones, it is associated with 
cellular DNA replication and therefore susceptible to a 
cell proliferation process (Girod and Zryd, 1991). In other 
words, depending on the effect induced by the 
phytohormones, a phenotype can change the color and 
shape of the cells made of it. 

The RCGR and Wc of A. brasiliana callus showed the 
best results under white and blue lights, agreeing with 
results reported for another species as Suaeda salsa 
(Zhao et al., 2010), which had a RCGR markedly higher 
in calli grown under white light. The calli grown on 
medium containing IAA and 2,4-D  (MCI- 2)  and  medium 

with BA and 2,4-D (MCI-3) had higher rates of daily 
growth, as well as higher final mass accumulations. 
Studies done with Portulaca species calli (Noda and 
Adachi, 2000) showed the highest growth rate in calli 

cultured on a MS medium supplemented with 5 to 10 M 
of 2,4-D, with identical growth rates in different 
concentrations of auxin. Also, calli growth is higher when 
auxins are incorporated in the medium than when 
compared with that supplemented by cytokinins (Lee et 
al., 2011; Abu-romman and Suwwan, 2013).  

The accumulation of betacyanins when the plates were 
submitted to cultivation under darkness indicates that the 
light exposure is not a prerequisite for the formation of 
betacyanins in some plant species, but rather a powerful 
stimulant for their biosynthesis (Leathers et al., 1992). 
This light-induced mechanism of biosynthesis begins 
when the light signal from the phytochrome or 
cryptochrome passes through multiple signaling 
intermediates, which then regulates a transcription factor 
that can  control  the  expression  of  genes encoding key  



 
 
 
 

enzymes such as tyrosinase, DOPA oxidase, and glycosyl 
transferases, thereby triggering their post-translational 
modification, a process of fundamental importance in the 
formation of this pigment (Zhao et al., 2010). 

Exposure of Amaranthus tricolor (Elliott, 1979) and 
Celosia plumose (Nicola et al., 1974) seedlings to red-
and white-light lamps increased their betacyanins and 
betaxanthins production. In A. brasiliana, the highest 
biosynthesis of betaxanthins and glycosylated 
betacyanins was visualized in MCI-2 medium after 
exposure to blue light. These results corresponded to an 
approximately 12- and 4.5-fold increase in productivity 
when compared with the white light that is commonly 
used in tissue culture. Similar results were reported for 
cell suspensions of Chenopodium rubrum, for which an 
increase of 30% in amaranthin levels and 10% of betanin 
when cultivated under blue light (Berlin et al., 1986).  

Studies about the synergistic effect between kinetin 
and light in A. tricolor seedlings (Bianco-Colomas and 
Hugues, 1990) showed extremely positive results, with a 
high accumulation of betacyanins. By contrast, the results 
showed that the highest betacyanin concentration arose 
from betacyanins aglycones in a medium composed of 
auxin; these results showed that exposure to blue and 
white lights induced approximately 10 times more 
aglycones than under red light. It seems, therefore, that 
the pigmentation response generated by the luminous 
environment is an intrinsic feature of the cells themselves 
and related to the species to which they belong (Kishima 
et al., 1991). 

The quantification of total flavonoids revealed higher 
amounts in the MCI-2 and 3, agreeing with results 
obtained using Morus alba in which the auxins strongly 
induced the production of flavonoids in calli from 
adventitious roots cultured on MS medium supplemented 
with 5 mg L

-1
 of IAA (Lee et al., 2011).  

Interestingly, in studies using cell cultures of Centella 
asiatica, adding 2,4-D and kinetin to the culture media 
stimulated the production of flavonoids as quercetin, 
kaempferol, luteolin and rutin (Tan et al., 2010). It is 
evident then, in a general picture, that the MCI-2 
promoted the highest biosynthesis of metabolites, 
regardless of the level in light quality, when composed of 
a natural and a synthetic auxin (IAA, 0.75 mg L

-1
 and 2,4-

D, 1 mg L
-1

), respectively. Both auxins play an important 
role in the induction of calli and various auxins can have 
different effects, although the synthetic auxins in many 
cases are more effective than the natural ones (Baskaran 
et al., 2014).  

According to the results, the best medium for calli with 
a greater amount of mass and RCGR is the MCI-2, 
supplemented with both IAA and 2,4-D before inoculation 
on the MBI and cultivation in white light was ideal for A. 
brasiliana callus. 

The MCI-2 was the best also for the production of the 
metabolites of interest in this study; so, for production of 
quercetin-type flavonoids, white light has an essential 
importance.  In  the  production  of  betacyanin  aglycone-  
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types, the white and blue qualities of lights are both 
inductive of these pigments. However, for the biosynthesis 
of a greater amount of betacyanin glycosylated-types and 
for betaxanthins in A. brasiliana calli, it is indicated that 
the induction phase of the betalains is carried out under 
blue light, reaching a greater quantity of pigments in this 
quality of light. In these experiments, the red light was 
ineffective at inducing pigmentation in the calli of this 
plant species.  
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Rice growth and productivity are affected by biotic and abiotic stresses; key among them being 
drought. Conventional breeding for drought tolerance is slowed down by the complex nature of 
mechanisms underlying this stress although molecular markers offer a promising approach. Plant 
exposure to drought stress leads to a significant effect in chlorophyll content and reduction in 
photosynthesis. In this study, 23 Sudanese rice (Oryza sativa L.) genotypes under greenhouse 
conditions for drought tolerance were examined. The study focus on tracking changes in chlorophyll 
content under stress (by withholding water and later rewatering) and further screened them for DNA 
polymorphisms using simple sequence repeat (SSR) markers. The results showed that genotypes 
IR11A306, IRRI 154, NERCA 6, IR12N 240, NERICA 4, Wakra and IRRI 150 exhibited high drought 
tolerance based on the assay. After dehydration, IR11A306 recorded the highest increment in total 
chlorophyll while IR11A483 showed the highest reduction followed by NERICA 15, IR11 N121, IRRI 168, 
NERICA 7, NERICA 1, NERICA 14 and Nipponbare. When plants were rehydrated and total chlorophyll 
measured, the highest increase and best recovery were observed in IR74371-70-1-1 followed by IRRI 
168, IRRI 147, Nipponbare, Kosti 2, IAC 165 and Umgar. Genotype IR11A306 showed the least reduction 
in chlorophyll followed by NERICA 15, IRRI 150, IRRI 122, IR12N 240, IRRI 154, NERICA 16, NERICA 4 
and Wakra. Eighteen out of the 19 primers tested showed amplification of the SSR markers generating 
569 alleles that ranged between 13 and 113 alleles per marker. These alleles further produced 
polymorphism information content (PIC) values of 0.51 to 0.99 per marker. The assay helped select 
genotypes that showed a steady recovery of chlorophyll content following drought stress while the 
markers studied could be useful for future molecular breeding for drought tolerance in rice.  
 
Key words: Chlorophyll, drought tolerance, polymorphism, rice, simple sequence repeats (SSR), sudanese 
genotypes. 

 
 
INTRODUCTION 
 
Rice (Oryza sativa L.) is one of the most important  staple  food crops providing 27% of the  world  nutritional  energy  
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and 20% of overall nutritional protein (Muench et al., 
1998; Bashir et al., 2007). It is cultivated under diverse 
ecologies ranging from irrigated to rain-fed uplands, rain-
fed lowland and deep water. Irrigated rice is cultivated on 
55% of the world’s production area and accounts for 
about 75% of total rice production. Furthermore, over 3 
billion people in the world depend on rice for food 
(Awasthi and Lal, 2014). In Africa, Sudan has an 
estimated rice production area of more than 300,000 ha 
and if this area is properly utilized, it would suffice the 
local consumption demand and hence fill the gap with 
non-course food grain. Rice production in Sudan was 
introduced in the Gazira scheme by the technical 
assistance of China in 1973 and is manly practiced in the 
southern states. During this period, 12,000 ha were 
cultivated under irrigation with yields of between 3.5 and 
7.6 ton/ha attained. A few years ago, it was reported that, 
no breakthrough with regards to increasing the cultivated 
area and improving new varieties has been achieved 
(Mahgoub, 2014). Being in an arid and desert ecological 
zone, Sudan is one of the most vulnerable countries to 
climate change owing to a high climatic variability and low 
development (Elasha et al., 2005). Drought has been 
considered one of the major causes of food insecurity in 
Sudan (Mahgoub, 2014) and in many parts of the 
country, this was been exacerbated by decreasing annual 
rainfall over the past 60 years (Nimir and Elgizouli, 2011).  

Growth and productivity of rice is adversely affected by 
various biotic and abiotic stress factors key among them 
being drought (Ndjiondjop et al., 2010; Singh et al., 
2012). Drought conditions lead to a reduction in plant 
growth by affecting various physiological and biochemical 
processes such as photosynthesis, respiration, 
translocation, ion uptake, carbohydrate metabolism, 
nutrient metabolism and growth promoter activities 
(Farooq et al., 2008). Drought stress leads to a reduction 
in leaf area, cell size and intercellular volume (Ndjiondjop 
et al., 2010). Furthermore, it has been demonstrated that 
exposure of plants to drought leads to a significant effect 
in chlorophyll contents as a result of the reduction in leaf 
growth (Chutia and Borah, 2012). Most of the cultivated 
rice varieties are susceptible to drought therefore 
necessitating the need for continued improvement 
(Uphoff et al., 2015). In attempts to overcome the drought 
problem, researchers in various improvement programs 
have used molecular markers to identify germplasm with 
traits related to drought tolerance (Afiukwa et al., 2016).  

Development of molecular markers and their use for 
genetic dissection of agronomical important traits has 
been identified as a powerful tool for studying complex 
plant traits such as drought tolerance (Suji et al., 2011). 
Particularly,  DNA-based  molecular  markers  have  been  

 
 
 
 
reliably used with availability of a large number of 
polymorphic markers enabling precise classification of 
the cultivars (Sonia, 2013). Improvement of rice for 
drought tolerance using conventional breeding methods 
is slow due to geographical differences and the variations 
of seasons in drought timing and severity, the complex 
nature of drought tolerance traits and the difficulty in 
selection of combinations of traits (Courtois et al., 2003). 
Other factors that have slowed down this process include 
low heritability, multiple gene control as well as genotype 
and environmental interactions (Cattivelli et al., 2008). 
The uses of molecular markers to select accessions 
possessing genes and genomic regions that control 
target traits can fast-track the progress in breeding 
drought tolerant rice. This is because molecular markers 
are consistently transmitted from generation to 
generation and are not subject to environmental 
influences (Afiukwa et al., 2016). Studies using molecular 
markers have reported success in identification of QTLs 
underlying various drought tolerance traits in rice 
chromosomes. For instance, Vasant (2012) showed that 
12 SSR markers are strongly associated with root traits 
under drought while 14 SSRs show a significant 
association with yield and its components under drought. 
Furthermore, other molecular markers associated with 
drought-related traits have also been reported thereby 
affirming the usefulness of these markers in the 
molecular breeding of rice for improved drought tolerance 
(Afiukwa et al., 2016). Several molecular markers such 
as Restriction Fragment Length Polymorphism (RFLP), 
Random Amplified Polymorphic DNA (RAPD), Simple 
Sequence Repeats (SSRs), Inter Simple Sequence 
Repeats (ISSRs), Amplified Fragment Length 
Polymorphism (AFLP) and Single Nucleotide 
Polymorphisms (SNPs) are presently available to assess 
the variability and diversity at molecular level and have 
been used to enhance traditional breeding programs to 
improve rice crop (Sonia, 2013). The SSR markers were 
identified as the system of choice for genetic analysis in 
rice because of their efficiency, abundance in the rice 
genome, high level of polymorphism and high but simple 
reproducible assays that are reliable (Singh et al., 2010). 
This study therefore aimed to determine the SSR 
markers linked to drought tolerance traits and their 
association with phenotypic traits in rice genotypes 
cultivated in Sudan. The study also assayed for changes 
in total chlorophyll content following drought stress by 
withholding water from the plants and later re-watering 
them. Data obtained here is expected to contribute 
towards marker assisted breeding for drought tolerance 
for sustainable rice production under the current climate 
changing conditions. 
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Table 1. List of rice genotypes used in the study. 
 

Name Origin (Country, Group)  Ecosystem level of drought tolerance 

NERICA 6 Sierra Leone Upland Drought tolerant 

NERICA 16 Sierra Leone Upland Drought tolerant 

NERICA 15 Sierra Leone Upland Drought tolerant 

NERICA 14 Sierra Leone Upland Drought tolerant 

NERICA 4 Sierra Leone Upland Drought tolerant 

Wakra Indonesia Upland Drought tolerant 

Kosti 2 WARDA Upland Drought tolerant 

Kosti 1 WARDA Upland Drought tolerant 

IRRI 150 Philippines Undefined Undefined 

IR11A306 IRSEA Undefined Undefined 

IR11A483 IRSEA Undefined Undefined 

IRRI 147 Philippines Undefined Undefined 

IRRI 122 Philippines Undefined Undefined 

NERICA 1 Sierra Leone Upland Drought tolerant 

IR12N240 IRSEA Undefined Undefined 

IR74371-70-1-1 India Undefined Drought tolerant 

IR11N121 IRSEA Undefined Undefined 

IRRI 154 Philippines Undefined Undefined 

IRRI 168 Philippines Undefined Undefined 

Umgar China Upland Drought tolerant 

Nipponbare  Japan Upland Undefined 

IAC 165  Brazil Upland Undefined 

NERICA 7 Sierra Leone Upland Drought tolerant 

 
 
 
MATERIALS AND METHODS 
 
Plant materials 
 
Seeds of twenty three (23) Oryza sativa L. genotypes grown in 
Sudan with varying degree of tolerance to drought were obtained 
from Biotechnology and Biosafety Research Center (BBRC), 
Agricultural Research Corporation, Sudan and used. These 
included 11 upland drought tolerant genotypes (NERICA 4, 
NERICA 6, NERICA 14, NERICA 15, NERICA 16, NERICA 1, 
NERICA 7, Umgar¸ Kosti 1, Kosti 2 and Wakra), ten genotypes 
(IRRI 150, IR 11A306, IR 11A483, IRRI 147, IRRI 122, IR 12N240, 
IR 74371-70-1-1, IR11N121, IRRI 154 and IRRI 168) still under 
research in Sudan and two genotypes (IAC 165 and Nipponbare) 
from Kenyatta University (KU), Kenya. Genotype description is 
presented in Table 1. 
 
 
Determination of chlorophyll content from rice 
 
Chlorophyll content analysis was conducted on rice leaves grown in 
the greenhouse at the Plant Transformation Laboratory, Kenyatta 
University, Kenya. Rice seeds were directly sowed in plastic pots 
(size 10*10*5 cm) containing garden soil placed in buckets 
containing water for underwatering. The greenhouse conditions 
were: 12 h light/12 h dark photoperiod; 28ºC day and 24ºC night 
temperature and 60% of humidity. Five plants were used for each 
genotype with three replicates. Pots were randomized and irrigated 
after every five days. At the 3 to 4 leaf stage (corresponding to 
around 3 weeks after sowing), the plants were irrigated constantly 
until 60 days followed by the first chlorophyll extraction according to 

Botstein et al. (1980). Five leaf discs were punched from rice plants 
using a paper punch and ground to a fine powder under liquid 
nitrogen. Total chlorophyll was then extracted using acetone with a 
10 min centrifugation step. The chlorophyll was quantified using a 
spectrophotometer (Spectrometre UV- Visible- UV- 3100 PC- VWR) 
under 660 nm wavelength. Three spectrophotometer readings were 
taken and an average calculated for each genotype.  The plants 
were exposed to drought stress conditions by draining water from 
the buckets and placing back the plastic pots. The plants were 
maintained under this condition for seven days after which a 
second chlorophyll extraction was done. Plants were then put under 
the normal condition by rewatering the buckets and a 3rd chlorophyll 
extraction was done seven days later.  
 
 
Screening rice genotypes using SSR markers  
 
Genomic DNA was isolated from fresh three week-old rice leaf 
samples grown in the greenhouse using a DNA extraction method 
described by Murray and Thompson (1980). Quality of the extracted 
DNA was determined using agarose gel electrophoresis and 
quantified using a nanodrop. Eighteen (18) SSR primers previously 
reported to have association with drought tolerance traits in rice 
(Afiukwa et al., 2016) were used for PCR amplification to test any 
polymorphisms among the rice accessions under this study. Primer 
description is shown in Table 2. PCR was done in 25 μl reaction 
mixture comprising 1X PCR master mix (New England Biolabs), 
0.25 µM of each primer (forward and reverse), 10 ng/µl of template 
DNA and deionised water. The reactions were carried out in a 
thermocycler (Eppendorf Inc.) under the following conditions; an 
initial heating step of 95ºC for 3 min  (denaturation)  followed  by  35  
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Table 2. List of SSR markers used to in the current study. 
 

Primer name Primer sequence SSR motif Chr. Num. Size of bands Sources 

RM38 
F: ACGAGCTCTCGATCAGCCTA 

R: TCGGTCTCCATGTCCCAC 
(GA)16 8 250 Srividhya et al., 2011 

RM252 
F: TTCGCTGACGTGATAGGTTG 

R: ATGACTTGATCCCGAGAACG 
(CT)19 4 216 McCouch et al., 2002 

RM170 
F: TCGCGCTTCTTCCTCGTCGACG 

R: CCCGCTTGCAGAGGAAGCAGCC 
(CCT)7 6 121 Yue et al., 2005 

RM318 
F: GTACGGAAAACATGGTAGGAAG 

R: TCGAGGGAAGGATCTGGTC 
(GT)15 2 140 Srividhya et al., 2011 

RM279 
F:GCGGGAGAGGGATCTCCT 

R: GGCTAGGAGTTAACCTCGCG 
(GA)16 2 174 Ordonez et al., 2010 

RM7390 
F: CTGGTTAACGTGAGAGCTCG 

R: GCAGATCAATTGGGGAGTAC 
(GATA)8 9 140 McCouch et al., 2002 

RM432 
F: TTCTGTCTCACGCTGGATTG 

R: AGCTGCGTACGTGATGAATG 
(CATC)9 7 187 Vikram et al., 2011 

RM5367 
F: AGTACCTCTCACTCGCCTGC 

R: TGTCAGCTGTGAGTGAAGTCG 
(TC)13 12 185 McCouch et al., 2002 

RM5423 
F: ATCCCACTTGCAGACGTAGG 

R: ACAGCAGCAAGGTGCCTC 
(TC)16 1 202 McCouch et al., 2002 

RM5850 
F: TTAGGTGTGTGAGCGTGGC 

R: ATACACAGATGACGCACACG 
(ATA)27 6 181 McCouch et al., 2002 

RM36 
F: CAACTATGCACCATTGTCGC 

R: GTACTCCACAAGACCGTACC 
(GA)23 3 192  Brondani et al., 2002  

RM3558 
F: ACGAGAGATCTTCTTTGCAG 

R: CCTCTATTTATGCCTCTACGC 
(GA)12 4 161 McCouch et al., 2002 

RM517 
F: GGCTTACTGGCTTCGATTTG 

R: CGTCTCCTTTGGTTAGTGCC 
(CT)15 3 266 Lu et al., 2005 

RM6130 
F: GGCAGAGAGAGCTGCATCTC 

R: GACGACGACGAACCCAAC 
(CGC)8 4 116 McCouch et al., 2002 

RM583 
F: AGATCCATCCCTGTGGAGAG 

R: GCGAACTCGCGTTGTAATC 
(CTT)20 1 192 Vikram et al., 2011 

RM1141 
F: TGCATTGCAGAGAGCTCTTG 

R: CAGGGCTTTGTAAGAGGTGC 
(AG)12 1 100 McCouch et al., 2002 

RM260 
F: ACTCCACTATGACCCAGAG 

R: GAACAATCCCTTCTACGATCG 
(CT)34 12 111 McCouch et al., 2002 

RM525 
F: GGCCCGTCCAAGAAATATTG 

R: CGGTGAGACAGAATCCTTACG 
(AAG)12 2 131 McCouch et al., 2002 

RM331 
F:  GAACCAGAGGACAAAAATGC 

R:  CATCATACATTTGCAGCCAG 

[(CTT)4GT
T]2(CTT)11 

8 176 Srividhya et al., 2011 

 
 
 
cycles of 94ºC for 30 s, annealing at 55ºC for 30 s and an extension 
period of 68ºC for 30 s. A final extension period of 68ºC for 5 min 
was also included. The amplified PCR products were resolved on a 
2% agarose gel after staining with SYBR green and run at 100 volts 
for 1 h alongside a 50 bp DNA ladder. The gels were visualized 
under UV light from a transilluminator and documented using a 
digital camera. The amplified bands were scored for each SSR 
marker, generating a binary data matrix of 1 (presence) and 0 
(absence) for each primer. This information was then used to 
determine the number of alleles and the Polymorphism Information 
Content (PIC) by using the formula described by Botstein et al.  
(1980) as follows: 

 
 

Where, Pi and Pj are the frequencies of the i
th 

and j
th 

alleles of a 

given marker, respectively, n = number of different alleles 
 
 

Statistical analysis 
 

Analysis   of   variance   (ANOVA)   was   performed    to    compare  
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Figure 1. Plants of Kosti 1 genotype in the greenhouse before (A) and after (B) exposure to drought stress by 
withholding water for 7 days. 

 
 
 
chlorophyll contents among genotypes under the imposed drought 
conditions using Statistical analysis software (SAS) version 9.2. A 
Tukey’s HSD test at 95% confidence interval was used for mean 
separations and the data presented as means with their respective 
standard errors. The SSR marker amplification data (1 and 0) were 
used to determine population genetic structure and presented as a 
dendrogram generated by the Unweighted Pair Group Method with 
Arithmetic Mean (UPGMA) based on Jaccard’s dissimilarity 
coefficient in the Dissimilarity Analysis and Representation 
(DARwin) software version 6. Marker-trait association analysis was 
done by physically comparing the pattern of the SSR markers 
clustered from the genotypes with the percentage change in the 
total chlorophyll content as a result of drought stress.   
 
 
RESULTS 
 
Effect of drought on rice chlorophyll content 
 
Withholding water for seven days resulted in a marked 
effect on total chlorophyll content in all rice genotypes 
under this study. The effect was first noted in the color 
change in the leaves with those under stress turning 
yellow compared to plants growing under normal 
conditions (Figure 1). Total chlorophyll content was 
significantly affected despite all genotypes responding 
differently to the drought stress treatment. Under normal 
watering conditions (control) (Figure 2), NERICA 7 
showed the highest chlorophyll content followed by 
significantly lower levels (p≤0.05) in NERICA 15, Kosti 1, 
NERICA 1, NERICA 14, IAC 165, IRRI N 121 and Wakra. 
Genotype IRRI 154 recorded the lowest chlorophyll 
followed by Nipponbare, IR12N240, IR11A483, Kosti 2, 
IR74371-70-1-1 and IR11A306. After dehydration (Figure 
3), IR11A306 recorded the highest increment in total 
chlorophyll followed by NERICA 4, Kosti 1, Wakra, 
NERICA 6, IR12N240, IAC 165 and IRRI 150, while 
IR11A483 showed the highest reduction followed by 

Nipponbare, Kosti 2, IR74371-70-1-1, IRRIN121, IRRI 
168, NERICA 7, NERICA 15 and NERICA 1. When plants 
were rehydrated and total chlorophyll measured (Figure 
4), the highest increase and best recovery were observed 
in IAC 16 followed by Kosti 1, IR 74371-70-1-1, IRRI 147, 
NERICA 6, Umgar and IRRI 168, while NERICA 15 
showed the least reduction in chlorophyll levels followed 
by IR11A483, IR 11A 306, IRRI 122, IRRI 150, IR12N240 
and IRRI 154.  

All the genotypes recorded different values of change 
in total chlorophyll (Table 3). At the end of the 
dehydration period, genotype IR 11A 306 recorded the 
highest increase in total chlorophyll followed by IRRI 154, 
NERICA 6, IR12N240, NERICA 4, Wakra and IRRI 150, 
while IR11A483 showed the highest reduction followed 
by Nerica 15, IR11N121, IRRI 168, NERICA 7, NERICA 
1, NERICA 14 and Nipponbare. After rehydration, the 
highest increase and best recovery were observed in 
IR74371-70-1-1 followed by IRRI 168, IRRI 147, 
Nipponbare, Kosti 2, IAC 165 and Umgar. Genotype 
IR11A306 showed the least reduction in chlorophyll 
levels followed by NERICA 15, IRRI 150, IRRI 122, 
IR12N240, IRRI 154, NERICA 16, NERICA 4 and Wakra. 
In general, NERICA 4 and Wakra performed best under 
both conditions (before and during dehydration) but their 
chlorophyll contents declined after rehydration. NERICA 
6, IRRI 154 and IR11A306 showed a weak performance 
in normal conditions and after rehydration, but a good 
performance during the dehydration period.   
 
 
Population structure of rice genotypes and SSR 
polymorphism 
 
For determination of the levels of genetic diversity in the 
population under the current study, a total of 18 out of the  
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Table 3. Percentage change in total chlorophyll contents following dehydration and rehydration in rice genotypes.  

 

S/N Genotype 
% Chlorophyll change 

after dehydration 
Rank 

% Chlorophyll change 
after rehydration 

Rank 

1 IAC 165 -19.41 9 7.31 6 

2 IR 11A 306 187.12 1 -97.03 23 

3 IR 11A 483 -82.88 23 -22.98 8 

4 IR 12N 240 57.33 4 -83.52 18 

5 IR 74371-70-1-1 -46.51 12 257.54 1 

6 IRRI 150 2.77 7 -92.17 21 

7 IRRI 122 -26.72 10 -91.03 20 

8 IRRI 147 -38.22 11 43.39 3 

9 IRRI 154 150.53 2 -83.36 18 

10 IRRI 168 -73.87 20 63.93 2 

11 IRRI N 121 -77.61 21 -63.56 12 

12 KOSTI 1 -1.48 8 -26.64 9 

13 KOSTI 2 -57.43 15 7.89 5 

14 NERICA 1 -61.71 18 -65.39 13 

15 NERICA 14 -59.69 17 -68.54 14 

16 NERICA 15 -77.98 22 -96.17 22 

17 NERICA 16 -51.33 14 -79.81 17 

18 NERICA 4 16.79 5 -78.029 16 

19 NERICA 6 69.28 3 -51.96 11 

20 NERICA 7 -65.89 19 -28.31 10 

21 NIPPONBARE -59.32 16 14.18 4 

22 UMGAR -48.54 13 2.67 7 

23 WAKRA 6.89 6 -69.46 15 

 
 
 

 
 

Figure 2. Total chlorophyll content in rice leaves after 2 months of growth under normal conditions. Genotypes 
(means) with the same letter are not significantly different. 

 
 
 

19 SSR markers successfully amplified and 
representative gel images of the results are presented in 
Figure 5. Information on allele frequency, allele number 
and PIC are summarized in Table 4. The 18 SSR primers 

resulted in a total of 569 alleles with 13 to 113 alleles per 
primer at an average of 31.7. The PIC values ranged 
from 0.51 to 0.99 with a mean value of 0.88. Construction 
of a dendrogram of the 23 rice genotypes  using  UPGMA  
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Figure 3. Total chlorophyll content in rice leaves 7 days after dehydration. Genotypes (means) 
with the same letter are not significantly different. 

 
 
 

 
 

Figure 4. Total chlorophyll content after 7 days of rewatering. Genotypes (means) with the same 
letter are not significantly different. 

 
 
 
method clustered the genotypes into 3 major clusters 
(Figure 6).  Cluster 1 had 2 distinct sub-groups with all 
the members in this sub-group originating from the upland 
ecosystem. The genotypes that clustered in this group 
were Kosti 2, NERICA 14, Kosti 1, Wakra, NERICA 4, 
NERICA 15, NERICA6, NERICA 7, NERICA 16, IAC 165 
and NERICA 1, while sub-group 2 comprised Nipponbare, 
Umgar and IR12N240. The second cluster comprised 
lowland rice genotypes and these were further grouped 
into two sub-group; sub-group 1 that had IR11A306, IRRI 
150, IR11A483, IRRI 147, IRRI 122 and IR 74371-70-1-1 

and sub-group 2 that had IRRI 154 and IR11N121. A 

lowland IRRI 168 genotype formed cluster 3. 
 
 
Marker- trait association under drought stress 
analysis 
 
The above analysis was used to manually compare the 
pattern in which the SSR markers grouped the genotypes 
and the change in total chlorophyll content in each 
genotype.  It was found that none of  the  markers  clearly  
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Figure 5. Representative gels of fragments amplified by PCR targeting SSR markers common in size to rice. M -50 bp ladder; 
-ve= negative control; numbers 1- 23 represent each of the rice varieties; A = RM6130; B = RM 38; C = RM5423. 

 
 
 

Table 4. Genetic diversity indices detected in rice genotypes by SSR markers. 
  

SSR primer Allele frequency Allele number PIC 

RM38 0.96 27 0.95 

RM252 1 27 0.99 

RM170 1 33 0.99 

RM318 1 37 0.99 

RM279 0.74 28 0.73 

RM7390 0.52 29 0.51 

RM432 0.74 57 0.73 

RM5367 1 23 0.99 

RM5423 0.96 22 0.95 

RM5850 0.57 13 0.56 

RM36 1 26 0.99 

RM3558 1 23 0.99 

RM517 1 24 0.99 

RM6130 0.96 113 0.95 

RM583 1 23 0.99 

RM1141 0.96 22 0.95 

RM260 0.61 15 0.6 

RM525 1 27 0.99 

Mean 0.89 31.7 0.88 

 
 
 
grouped the genotypes according to the patterns of 
change in total chlorophyll content. Although the  majority 

of cluster 1 (Figure 6) are known as upland, only Nerica 
6,  Nerica  4  and  Wakra  showed  an  increase   in   total  
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Figure 6. A dendrogram generated from UPGMA cluster analysis based on Jaccard’s dissimilarity coefficient with 1000 boostrap 
replicates showing 23 rice genotypes generated from 18 SSR markers scoring. 

 
 
 
chlorophyll content at the end of the dehydration period 
while the other genotypes showed a significant reduction. 
Genotypes in cluster 2 and cluster 3 are lowland. Here, 
IR11A306, IRRI 154 and IRRI 150 showed an increase in 
total chlorophyll content at the end of the dehydration 
period with the rest of the genotypes in both clusters 
showing a reduction in chlorophyll. 
 
 
DISCUSSION 
 
Effect of drought stress on total chlorophyll content  
 
Drought stress affects morphological and physiological 
traits during plant growth and development. Particularly, 
drought stress leads to a reduction in leaf area, cell size 
and intercellular volume (Ndjiondjop et al., 2010).  
Furthermore, it has been demonstrated that exposure of 
plants to drought leads to a significant effect in 
chlorophyll contents as a result of the reduction in leaf 
growth (Chutia and Borah, 2012). In the current study, 
each rice genotype was examined under drought stress 
by monitoring the change in total chlorophyll content 
following seven days of withholding water and a further 
seven days of re-watering. The study data showed 
significant increase in levels of chlorophyll in some 
genotypes while others recorded marked chlorophyll 
decline as a result of dehydration. This could be 
attributed to drought’s effect on chlorophyll biosynthesis 
and therefore a strong indication that photosynthesis 

would subsequently be affected in these plants. It has 
been previously reported that chlorophyll supports more 
efficient energy conversion into ATP and NADPH which 
are then used as source of energy to build carbohydrates 
from CO2 (Pena et al., 1986). Chlorophyll degradation in 
these genotypes might be an indication that 
photosynthesis had already been inhibited when the color 
of leaves started to change. Consequently, some of the 
genotypes including IR74371-70-1-1, IRRI 168, IRRI 147, 
Nipponbare, Kosti 2, IAC 165 and Umgar showed 
recovery of chlorophyll after rehydration while IR11A306, 
NERICA 15, IRRI 150, IRRI 122, IR12N 240, IRRI 154, 
NERICA 16, NERICA 4 and Wakra showed no recovery 
following drought (based on the negative percentage loss 
of chlorophyll). Overall, these observations indicated 
variations among these genotypes with respect to 
chlorophyll levels and how the individual lines respond to 
drought stress. It is important for a tolerant plant to 
maintain high level of chlorophyll under drought stress to 
ensure continued photosynthesis. In cereals, higher total 
chlorophyll content under stress conditions has been 
reported and this is an indicator for drought tolerance 
(Gummuluru et al., 1989). 
 
 
Patterns of SSR polymorphism and their correlation 
with chlorophyll under drought stress 
 
The uses of molecular markers to select germplasm 
possessing  genes  and  genomic   regions   that   control  
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target traits can fast-track the progress of breeding for 
drought tolerant rice. This is because molecular markers 
are transmitted faithfully from generation to generation 
and are not subject to environmental influences (Afiukwa 
et al., 2016). The SSR markers are efficient along with 
the system of choice for genetic analysis in rice because 
of their abundance in the rice genome, high level of 
polymorphism, reliable and high but simple reproducible 
assays (Singh et al., 2010). For these reasons therefore, 
SSR markers have been used in molecular 
characterization of rice as well as other crop species 
(Semagn et al., 2006). In the current study, a total of 569 
alleles were amplified using 18 SSR primers ranging 
between 13 and 113 alleles per primer. The study data is 
comparatively higher than that of Aficukwa et al. (2016) 
who reported between 4 and 25 alleles per primer and 
PIC values of 0.76 to 0.95. This reflects the high 
discriminatory ability of the used markers and therefore 
affirms their use in genetic characterization studies 
(Singh et al., 2010). 

Improvement of rice for drought tolerance using 
conventional breeding methods is slow due to the 
differences in geographical locations and variations of 
seasons in drought timing and severity, the drought 
tolerance complex nature itself and the selection of 
combinations difficulty of traits (Courtois et al., 2003). 
Furthermore, other factors that underline the slow 
progress include low heritability, multiple gene control, 
genotype and environment interactions. All these were 
shown to substantially influence crop yields (Cattivelli et 
al., 2008). Tracking the population structure of rice 
genotypes under this study grouped them into 3 major 
clusters. The dendrogram analysis provided an evidence 
of the ecosystem of each genotype and the genetic 
relation between them as cluster 1 (with two sub-clusters) 
comprised 93% upland genotypes and the rain fed 
lowland genotypes grouped in cluster 2 and 3.   

A comparison between the pattern in which the SSR 
markers clustered the genotypes and change in 
chlorophyll allowed determination of marker-trait 
associations for drought tolerance showed that none of 
the markers clearly grouped the genotypes according to 
the change pattern of the total chlorophyll content. A 
majority of cluster 1 genotypes were from the lowland 
ecosystem, and showed an increase in the chlorophyll 
content at the end of dehydration as expected result 
while the others showed a significant reduction. In spite 
of both cluster 2 and 3 being rain fed lowland genotypes, 
some of them showed an increase in the chlorophyll 
content at the end of the dehydration period. It could, 
therefore be deduced from the results that the markers 
were able to group the genotypes based on their 
ecosystem reflecting the strength of the SSR markers in 
analyzing and explaining  the population genetic structure 
as earlier demonstrated by Garris et al. (2005). Notable, 
also, was the observation that although NERICA 1, 
NERICA  14,  NERICA 15,  NERICA 16   and   NERICA 7  

 
 
 
 
have been described as drought tolerant (Somado et al., 
2008); they did not show the expected performance 
under the current study conditions. 
 
 

Conclusion 
 
This study noted variations among the genotypes 
screened with respect to chlorophyll levels and how the 
individual lines respond to drought stress. For 
determination of the levels of genetic diversity in the 
population, a total of 18 SSR markers were successfully 
amplified resulting in a total of 569 alleles with 13 to 113 
alleles per primer with an average of 31.7. The PIC 
values ranged from 0.51 to 0.99 with a mean value of 
0.88. Furthermore, comparing the pattern in which the 
SSR markers grouped the genotypes and the change in 
total chlorophyll content in each genotype, showed that 
none of the markers clearly grouped the genotypes 
according to the patterns of change in total chlorophyll 
contents. These results could play a role in developing 
genotypes that tolerate drought stress through analysis of 
molecular and morphological genetic diversity information 
thereby selecting the best parental lines for developing 
and improving drought tolerant rice varieties. 
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